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Not exactly an apology. . .

I retained the announced title
Characters of unipotent representations.

But this talk is really about more basic questions:

1. What is a unipotent representation?
2. Why should I care?
3. (Having understood the answers to (1) and (2)) how can I

devote all of my mathematical energy to unipotent
representations?

The tools I will discuss are certainly relevant to
character theory, but I won’t say how.
See, I told you it wasn’t an apology.
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Gelfand’s abstract harmonic analysis
Topological grp G acts on X , have questions about X .

Step 1. Attach to X Hilbert space H (e.g. L2(X )).
Questions about X  questions about H .
Step 2. Find finest G-eqvt decomp H = ⊕αHα.
Questions about H  questions about each Hα.
Each Hα is irreducible unitary representation of G:
indecomposable action of G on a Hilbert space.

Step 3. Understand Ĝu = all irreducible unitary
representations of G: unitary dual problem.
Step 4. Answers about irr reps answers about X .
Toshi’s work addresses many parts of Gelfand’s
program in many ways.

Today: Step 3 for reductive Lie group G.
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What does Ĝu look like (part one)?

Most irr unitary reps of reductive Gf proper Levi
subgroups L ⊂ G by induction.
Two ways this happens. . .
Real parabolic induction:

1. L = centralizer of hyperbolic Lie algebra element X .

2. X  P = LU real parabolic subgroup.

3. πL ∈ L̂u  πG = IndG
P (πL).

4. Think of πL ∈ family {πL ⊗ χL | χL unitary one-diml of L}.

5. πG always finite direct sum of irr unitary reps.

6. usually (almost all twists χL) πG is irreducible.

Unitary 1-diml reps of L = union of real vec spaces.
So this part of unitary dual is finitely many pieces

Ĝu ⊃ reps of L′ × (real vector space).
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What does Ĝu look like (part two)?

Here is the second way that irr unitary reps of
reductive G arise from proper Levi subgroups L ⊂ G:
Cohomological parabolic induction:

1. L = centralizer of elliptic Lie algebra element Z .

2. Z  q = l+ u ⊂ gC θ-stable parabolic subalg.

3. Think of πL ∈ family
{πL ⊗ χL | χL unitary one-diml of L}.

4. πL ∈ L̂u  πG = Lgq(πL) virtual G rep.

5. if πL ⊗ χL appropriately positive, then πG = Lgq(πL) is
finite direct sum of irr unitary reps.

6. usually (most pos twists χL) πG is irreducible.

In this case unitary 1-diml of L = union of lattices.
So this part of unitary dual is finitely many pieces

Ĝu ⊃ reps of L′ × (cone in a lattice).
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This is most of Ĝu. . .

You may know about the irreducible unitary
representations of SL(2,R), which were classified by
Valentine Bargmann in the 1940s. Here’s the list:

Spherical princ series πeven(iν) ' πeven(−iν) (ν ∈ R).

Nonspherical princ series πodd(iν) ' πodd(−iν) (ν ∈ R).

The nonspherical representation πodd(0) is a direct sum of two
irreducible representations π+(0) and π−(0).

Holomorphic discrete series π+(n) (n ∈ {1,2,3, . . .}.

Antiholomorphic discrete series π−(n) (n ∈ {1,2,3, . . .}.

These four families (two real vector spaces, two cones in a
lattice) are most of Ĝu . What remains are

Complementary series πeven(t) (0 < t < 1), and

Trivial representation πeven(1).



David Vogan

Introduction

Unipotent reps

Translation fams

Fams of trans fams

The repn of W (λ0)

Unipotent representations

Unitary representations for any real reductive G:

1. finite # pieces (unitary dual of smaller group) × Ra :
unitarily induced.

2. finite # pieces (unitary dual of smaller group) × Nb :
cohomologically induced.

3. finite # small polygons :
deformations of unipotent representations

So everything is described by structure theory/recursion in
terms of unipotent representations.

The most fundamental problem in unitary representation
theory is describing unipotent representations.

Idea originates in work of Dan Barbasch in the 1980s.
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What’s a unipotent representation?

So far we have a very small list of examples:
1. trivial representation of any real reductive G
2. any rep of infl char zero of any real reductive G

Here are a few more:
3. metaplectic reps of Sp(2n,C); more generally
4. ladder representations of various simple G.

How to characterize unip reps? Look for more?
Two key properties:

1. rep is small as possible among similar reps
2. infl char small as possible among similar reps.

Example: trivial rep smallest among fin-diml reps.
Example: zero is smallest infl char among all reps.



David Vogan

Introduction

Unipotent reps

Translation fams

Fams of trans fams

The repn of W (λ0)

What’s a family of similar representations?

First example: some principal series reps.
G = SL(2,R). For each integer n, have a rep

Θp(n) = induced from χn

(
t x
0 t−1

)
= tn

infinitesimal character of Θp(n) = n
Θp(n)|SO(2) = chars of SO(2) ≡ n (mod 2)

So all reps Θp(n) are approximately same size
Θp(0) has smallest infl char.
Conclusion: Θp(0) is unique unipotent one.
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What’s a family of similar representations?

Second example: finite-diml reps.

G = SL(2,R). For each integer n, have a virtual rep

Θf (n) = rep with character
t − t−n

t − t−1

.
infinitesimal character of Θf (n) = n

Θf (n) =


irr of dimension n (n > 0)

minus irr of dimension −n (n < 0)

zero representation (n = 0)

Θf (n)|SO(2) =


−n + 1,−n + 3, . . . ,n − 1 (n > 0)

minus (−n + 1,−n + 3, . . . ,n − 1) (n < 0)

zero n = 0

So rep Θf (1) = trivial rep is smallest, and

Θf (1) has smallest infl char (among nonzero reps)

Conclusion: Θf (1) is unique unipotent one.
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What’s a family of similar representations?

Third example: discrete series reps.

G = SL(2,R). For each integer n, have a virtual rep

Θh(n) = rep with char −
sin(nθ)

sin(θ)
on compact Cartan

.
infinitesimal character of Θh(n) = n

Θh(n) =


hol disc ser of HC param n (n > 0)

disc ser plus irr −n-diml (n < 0)

hol limit of disc ser (n = 0)

Θh(n)|SO(2) = n + 1, n + 3, n + 5 . . .

So all reps Θh(n) = are similar in size, and

Θh(0) has smallest infl char

Conclusion: Θh(0) is unique unipotent one.
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Where we are

Would like to realize each irreducible representation
π0 of G as one point π0 = Θ(λ0) in a nice family
λ 7→ Θ(λ) of virtual representations.

To look for unipotent representations, minimize
infinitesimal character over the family Θ.

Next: construction of nice families of representations.
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Translation families: background

G real reductive, g = Lie(G) ⊗R C ⊃ h Cartan subalg.

Structure of G(C) dual lattices X∗(H) ⊂ h, X ∗(H) ⊂ h∗.

W = W (g, h) ⊂ Aut(X ∗) Weyl grp, finite reflection grp.

Theorem (Cartan-Weyl).

1. Restriction to H(C) of any algebraic rep F of G(C) is a
W -invariant multiset ∆(F ) ⊂ X ∗(H).

2. If F irreducible, then ∆(F ) contains (with mult one) a
unique W -orbit W · µ(F ) of largest weights.

3. F 7→ µ(F ) is bijection (irr alg reps of G(C))↔ (X ∗/W ).

Theorem (Harish-Chandra).

1. Center Z(g) of U(g) is isomorphic to
S(h)W = W -invariant poly functions on h∗.

2. Homomorphisms Z(g)→ C! h∗/W .
3. Action of Z(g) on any irr g-module X ! λ(X ) ∈ h∗.

(W -orbit of) λ(X ) is the infinitesimal character of X .
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Transl fams: def by Jantzen/Zuckerman
Here’s a general definition of nice family of similar reps.

Definition (Jantzen, Schmid, Zuckerman). Suppose H ⊂ G
is a Cartan in a real reductive group, and X ∗ = X ∗(H) ⊂ h∗

is the character lattice. A translation family is a map
Θ: λ0 + X ∗ → virtual reps of G,

with the following properties:

1. (each irr constituent of) Θ(λ) has infl char λ;
2. if F is a finite-diml algebraic rep of G, then

Θ(λ) ⊗ F =
∑

µ∈∆(F )

Θ(λ + µ).

So Θ is a family indexed by infl chars in λ0 + X ∗ ⊂ h∗.

Change λ in Θ! tensor with fin diml reps of G.

Theorem (Jantzen, Schmid, Zuckerman) Suppose π0 is a
finite length virtual rep of infl char λ0.

1. ∃ translation fam Θ on λ0 + X ∗ with Θ(λ0) = π0.
2. If λ0 is regular (meaning W λ0 = 1) then Θ is unique.
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Families of translation families (part one)

H ⊂ G, λ0 ∈ h
∗ infl char, X ∗ ⊂ h∗ char lattice.

Write Ĝ(λ0) = (finite) set of irr reps of G of infl char λ0.

Recall that a trans fam based on λ0 + X ∗ is a function from
λ0 + X ∗ to virtual reps of G.

Since virtual reps can be added and subtracted,

F (λ0 + X ∗) = all trans fams based on λ0 + X ∗

is an abelian group: add and subtract values of Θ.

Jantzen-Schmid-Zuckerman uniqueness thm =⇒

Corollary Suppose λ1 ∈ λ0 + X ∗ is regular. Then

evaluation at λ1 : F (λ0 + X ∗)→ ZĜ(λ1)

is an isom. So F (λ0 + X ∗) is free /Z, rank = #Ĝ(λ1).

The finite-rank Z module F (λ0 + X ∗) is the family of
translation families in the slide title.
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Families of translation families (part two)

F (λ0 + X ∗) = all trans fams based on λ0 + X ∗,

free abelian group, natural basis indexed by Ĝ(λ1).

What other structure does this abelian group carry?

Weyl group W = W (G(C),H(C)) acts on h∗ preserving X ∗.

But W may not preserve λ0 + X ∗. Integral Weyl grp for λ0 is

W (λ0) =def {w ∈W | w ·λ0 ∈ λ0+(lattice of roots of H in G)};

the group W (λ) is same for all λ ∈ λ0 + X ∗.

W (λ0) preserves the coset λ0 + X ∗.

Therefore W (λ0) acts on F (λ0 + X ∗) by

(w ·Θ)(λ) = Θ(w−1 · λ) (λ ∈ λ0 + X ∗).

This integral representation of the integral Weyl group is
the key to character theory for Ĝ(λ0).
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The τ invariant
We fix an infl char λ0 ∈ h

∗, with integral Weyl group

W (λ0) = {w ∈W | wλ0 − λ0 ∈ (root lattice)}.
The integral root system is

R(λ0) = {α ∈ R(G,H) | 〈α∨, λ0〉 ∈ Z}.

Fix also a positive system R+(λ0) ⊂ R(λ0) making λ0 weakly
dominant, and λ1 ∈ λ0 + X ∗ strictly dominant.

Π(λ0) = simple of R+(λ0), S(λ0) = {sα | α ∈ Π(λ0)} ⊂W (λ0).

Wkly dom elts of λ0 + X ∗ are a fund domain for W (λ0).

Trans fam Θ is irreducible (with respect to R+(λ0)) if Θ(λ) is irr
for all dom reg λ ∈ λ0 + X ∗.

Irr fams are a basis for F (λ0 + X ∗), identified with Ĝ(λ1).

Definition (Borho-Jantzen-Duflo). The τ-invariant of an irr Θ is

τ(Θ) = {s ∈ S(λ0) | s ·Θ = −Θ}.

Theorem Suppose E ⊂ S(λ0) W (E) ⊂W (λ0) Levi.

[sgn(W (E)) : F (λ0 + X ∗)] = #{irr Θ | E ⊂ τ(Θ)}

[triv(W (E)) : F (λ0 + X ∗)] = #{irr Θ | E ∩ τ(Θ) = ∅}.
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Cones and cells of irreducibles
Continue with pos int roots R+(λ0) making λ0 wkly dom.

For π ∈ Ĝ(λ0), write Θπ = unique irr fam with Θπ(λ0) = π.

The cone over π is

C(π) = {all irr constituents of all Θπ(λ) | λ ∈ λ0 + X ∗}

= {π′ ∈ Ĝ | π′ is an irr const of π ⊗ F ,

some irr alg rep F of G(C)}.

Write π′ ≤Θ π if π′ ∈ C(π), a partial preorder on Ĝ.

π′ ≤Θ π =⇒ AV(π′) ⊂ AV(π).

The cell of π is

C(π) = {all irr π′ with π′ ≤Θ π ≤Θ π′}

= {π′ ∈ Ĝ | π′ is an irr const of π ⊗ F ,

and π an irr const of π′ ⊗ E ,

some irr alg reps E , F of G(C)}.

Write π′ ∼Θ π if π′ ∈ C(π), an equivalence relation on Ĝ.
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More about the W (λ0) representation
Continue with pos int roots R+(λ0) making λ0 wkly dom.

Definition (Kazhdan-Lusztig) Make irr transl families a directed
W (λ0)-graph with edge of weight m from Θπ to Θπ′ whenever

1. τ(π) 1 τ(π′), and
2. dim Ext1(π, π′) = m.

An edge from Θπ to Θπ′ implies π′ ≤Θ π.

Conversely π′ ≤Θ π =⇒ ∃ directed path Θπ to Θπ′ .

Theorem (Lusztig-Vogan) Say Θπ irr transl fam on λ0 + X ∗, and
s ∈ S(λ0) is a simple reflection. Then

s ·Θπ =


−Θπ (s ∈ τ(π))

Θπ +
∑

m
π′←−π

s∈τ(π′)

m ·Θπ′ (s < τ(π))

Corollary The W (λ0) graph determines the W (λ0)
representation on translation families. Each cone C(π) spans a
W (λ0) subrepresentation, so the cell C(π) carries a natural
quotient representation Σ(π) of W (λ0).
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What does the cell representation tell you?

Continue with pos int roots R+(λ0) making λ0 wkly dom.

Smallest (weakly dom) infl char in λ1 ∈ λ0 + X ∗ is typically very
singular: that is, fixed by large set S1 of simple reflections.

Proposition Cell C(π) contains some irr Θπ1 nonzero at λ1 ⇐⇒

[triv(W (S1)) : Σ(π)] > i0.

So Σ(π) determines smallest infl char in C(π).

Theorem (Joseph, Lusztig).

1. Irr W (λ0) reps in Σ(π) are in a Lusztig family in Ŵ (λ0).
2. Family has a unique special rep σ0(π) ∈ Ŵ (λ0).
3. σ0(π) is Springer for a special nilpotent orbit O0(π) ⊂ g(λ)∗.
4. Lusztig’s truncated induction of σ0(π) Springer rep

σ(π) ∈ Ŵ , and so a nilpotent orbit O ⊂ g∗.

So Σ(π) determines GK dimension of π.


	Introduction
	Unipotent representations
	Translation families
	Families of translation families
	About the representation of W(0)

