Character formulas for unipotent representations

David Vogan

Massachusetts Institute of Technology

Characters of unipotent representations

Symmetry in Geometry and Analysis June 7-11, 2022
in honor of Toshiyuki Kobayashi

Outline

Introduction

Unipotent representations

Translation families

Families of translation families

About the representation of $W\left(\lambda_{0}\right)$

Slides at http://www-math.mit.edu/~dav/paper.html

Not exactly an apology...

I retained the announced title
Characters of unipotent representations.
But this talk is really about more basic questions:

1. What is a unipotent representation?
2. Why should I care?
3. (Having understood the answers to (1) and (2)) how can I devote all of my mathematical energy to unipotent representations?

The tools I will discuss are certainly relevant to character theory, but I won't say how.
See, I told you it wasn't an apology.

Gelfand's abstract harmonic analysis

Topological grp G acts on X, have questions about X.
Step 1. Attach to X Hilbert space $\mathcal{H}\left(\right.$ e.g. $\left.L^{2}(X)\right)$. Questions about $X \rightsquigarrow$ questions about \mathcal{H}.
Step 2. Find finest G-eqvt decomp $\mathcal{H}=\oplus_{\alpha} \mathcal{H}_{\alpha}$. Questions about $\mathcal{H} \rightsquigarrow$ questions about each \mathcal{H}_{α}.
Each \mathcal{H}_{α} is irreducible unitary representation of G : indecomposable action of G on a Hilbert space.
Step 3. Understand $\widehat{G}_{u}=$ all irreducible unitary representations of G : unitary dual problem.
Step 4. Answers about irr reps $\rightsquigarrow>$ answers about X.
Toshi's work addresses many parts of Gelfand's program in many ways.

Today: Step 3 for reductive Lie group G.

What does \widehat{G}_{u} look like (part one)?

Most irr unitary reps of reductive G m proper Levi subgroups $L \subset G$ by induction.
Two ways this happens...
Real parabolic induction:

1. $L=$ centralizer of hyperbolic Lie algebra element X.
2. $X \leadsto P=L U$ real parabolic subgroup.
3. $\pi_{L} \in \widehat{L}_{u} \rightsquigarrow \pi_{G}=\operatorname{Ind}_{P}^{G}\left(\pi_{L}\right)$.
4. Think of $\pi_{L} \in$ family $\left\{\pi_{L} \otimes \chi_{L} \mid \chi_{L}\right.$ unitary one-diml of $\left.L\right\}$.
5. π_{G} always finite direct sum of irr unitary reps.
6. usually (almost all twists χ_{L}) π_{G} is irreducible.

Unitary 1-diml reps of $L=$ union of real vec spaces.
So this part of unitary dual is finitely many pieces

$$
\widehat{G}_{u} \supset \text { reps of } L^{\prime} \times(\text { real vector space })
$$

What does \widehat{G}_{u} look like (part two)?

Here is the second way that irr unitary reps of reductive G arise from proper Levi subgroups $L \subset G$: Cohomological parabolic induction:

1. $L=$ centralizer of elliptic Lie algebra element Z.
2. $Z \rightsquigarrow q=I+\mathfrak{u} \subset g_{C} \theta$-stable parabolic subalg.
3. Think of $\pi_{L} \in$ family $\left\{\pi_{L} \otimes \chi_{L} \mid \chi_{L}\right.$ unitary one-diml of $\left.L\right\}$.
4. $\pi_{L} \in \widehat{L}_{u} \rightsquigarrow \pi_{G}=\mathcal{L}_{q}^{g}\left(\pi_{L}\right)$ virtual G rep.
5. if $\pi_{L} \otimes \chi_{L}$ appropriately positive, then $\pi_{G}=\mathcal{L}_{9}^{g}\left(\pi_{L}\right)$ is finite direct sum of irr unitary reps.
6. usually (most pos twists χ_{L}) π_{G} is irreducible.

In this case unitary 1-diml of $L=$ union of lattices. So this part of unitary dual is finitely many pieces

$$
\left.\widehat{G}_{u} \supset \text { reps of } L^{\prime} \times \text { (cone in a lattice }\right) .
$$

This is most of $\widehat{G}_{u} \ldots$

You may know about the irreducible unitary representations of $S L(2, \mathbb{R})$, which were classified by Valentine Bargmann in the 1940s. Here's the list:

Spherical princ series $\pi_{\text {even }}(i v) \simeq \pi_{\text {even }}(-i v) \quad(v \in \mathbb{R})$.
Nonspherical princ series $\pi_{\text {odd }}(i v) \simeq \pi_{\text {odd }}(-i v) \quad(v \in \mathbb{R})$.
The nonspherical representation $\pi_{o d d}(0)$ is a direct sum of two irreducible representations $\pi^{+}(0)$ and $\pi^{-}(0)$.
Holomorphic discrete series $\pi^{+}(n) \quad(n \in\{1,2,3, \ldots\}$.
Antiholomorphic discrete series $\pi^{-}(n) \quad(n \in\{1,2,3, \ldots\}$.
These four families (two real vector spaces, two cones in a lattice) are most of \widehat{G}_{u}. What remains are

Complementary series $\pi_{\text {even }}(t) \quad(0<t<1)$, and
Trivial representation $\bar{\pi}_{\text {even }}(1)$.

Unipotent representations

Unitary representations for any real reductive G :

1. finite \# pieces (unitary dual of smaller group) $\times \mathbb{R}^{a}$: unitarily induced.
2. finite \# pieces (unitary dual of smaller group) $\times \mathbb{N}^{b}$: cohomologically induced.
3. finite \# small polygons: deformations of unipotent representations

So everything is described by structure theory/recursion in terms of unipotent representations.

The most fundamental problem in unitary representation theory is describing unipotent representations. Idea originates in work of Dan Barbasch in the 1980s.

What's a unipotent representation?

So far we have a very small list of examples:

1. trivial representation of any real reductive G
2. any rep of infl char zero of any real reductive G Here are a few more:
3. metaplectic reps of $\operatorname{Sp}(2 n, \mathbb{C})$; more generally
4. ladder representations of various simple G.

How to characterize unip reps? Look for more?
Two key properties:

1. rep is small as possible among similar reps
2. infl char small as possible among similar reps.

Example: trivial rep smallest among fin-diml reps.
Example: zero is smallest infl char among all reps.

What's a family of similar representations?

First example: some principal series reps.
$G=S L(2, \mathbb{R})$. For each integer n, have a rep

$$
\Theta_{p}(n)=\text { induced from } \chi_{n}\left(\begin{array}{cc}
t & x \\
0 & t^{-1}
\end{array}\right)=t^{n}
$$

infinitesimal character of $\Theta_{p}(n)=n$
$\Theta_{p}(n) \mid s o(2)=$ chars of $S O(2) \equiv n(\bmod 2)$
So all reps $\Theta_{p}(n)$ are approximately same size
$\Theta_{p}(0)$ has smallest infl char.
Conclusion: $\Theta_{p}(0)$ is unique unipotent one.

What's a family of similar representations?

Second example: finite-diml reps.
$G=S L(2, \mathbb{R})$. For each integer n, have a virtual rep

$$
\Theta_{f}(n)=\text { rep with character } \frac{t-t^{-n}}{t-t^{-1}}
$$

infinitesimal character of $\Theta_{f}(n)=n$

$$
\begin{array}{r}
\Theta_{f}(n)= \begin{cases}\text { irr of dimension } n & (n>0) \\
\text { minus irr of dimension }-n & (n<0) \\
\text { zero representation } & (n=0)\end{cases} \\
\left.\Theta_{f}(n)\right|_{S O(2)}= \begin{cases}-n+1,-n+3, \ldots, n-1 & (n>0) \\
\operatorname{minus}(-n+1,-n+3, \ldots, n-1) & (n<0) \\
\text { zero } & n=0\end{cases}
\end{array}
$$

So rep $\Theta_{f}(1)=$ trivial rep is smallest, and
$\Theta_{f}(1)$ has smallest infl char (among nonzero reps)
Conclusion: $\Theta_{f}(1)$ is unique unipotent one.

What's a family of similar representations?

Third example: discrete series reps.
$G=S L(2, \mathbb{R})$. For each integer n, have a virtual rep
$\Theta_{h}(n)=$ rep with char $-\frac{\sin (n \theta)}{\sin (\theta)}$ on compact Cartan
infinitesimal character of $\Theta_{h}(n)=n$

$$
\begin{gathered}
\Theta_{h}(n)= \begin{cases}\text { hol disc ser of HC param } n & (n>0) \\
\text { disc ser plus irr }-n \text {-diml } & (n<0) \\
\text { hol limit of disc ser } & (n=0)\end{cases} \\
\left.\Theta_{h}(n)\right|_{\text {so(2) }}=n+1, n+3, n+5 \ldots
\end{gathered}
$$

So all reps $\Theta_{h}(n)=$ are similar in size, and
$\Theta_{h}(0)$ has smallest infl char
Conclusion: $\Theta_{h}(0)$ is unique unipotent one.

Where we are

Would like to realize each irreducible representation π_{0} of G as one point $\pi_{0}=\Theta\left(\lambda_{0}\right)$ in a nice family $\lambda \mapsto \Theta(\lambda)$ of virtual representations.

To look for unipotent representations, minimize infinitesimal character over the family Θ.

Next: construction of nice families of representations.

Translation families: background

G real reductive, $\mathfrak{g}=\operatorname{Lie}(G) \otimes_{\mathbb{R}} \mathbb{C} \supset \mathfrak{h}$ Cartan subalg.
Structure of $G(\mathbb{C}) \rightsquigarrow$ dual lattices $X_{*}(H) \subset \mathfrak{h}, X^{*}(H) \subset \mathfrak{h}^{*}$.
$W=W(\mathfrak{g}, \mathfrak{h}) \subset \operatorname{Aut}\left(X^{*}\right)$ Weyl grp, finite reflection grp.
Theorem (Cartan-Weyl).

1. Restriction to $H(\mathbb{C})$ of any algebraic rep F of $G(\mathbb{C})$ is a W-invariant multiset $\Delta(F) \subset X^{*}(H)$.
2. If F irreducible, then $\Delta(F)$ contains (with mult one) a unique W-orbit $W \cdot \mu(F)$ of largest weights.
3. $F \mapsto \mu(F)$ is bijection (irr alg reps of $G(\mathbb{C})) \leftrightarrow\left(X^{*} / W\right)$.

Theorem (Harish-Chandra).

1. Center $3(\mathrm{~g})$ of $U(\mathrm{~g})$ is isomorphic to $S(h)^{W}=W$-invariant poly functions on \mathfrak{b}^{*}.
2. Homomorphisms $3(\mathrm{~g}) \rightarrow \mathbb{C} \leadsto \mathrm{c}^{*} / W$.
3. Action of $\mathcal{Z}(\mathfrak{g})$ on any irr \mathfrak{g}-module $X \leadsto \lambda(X) \in \mathfrak{h}^{*}$.
(W-orbit of) $\lambda(X)$ is the infinitesimal character of X.

Transl fams: def by Jantzen/Zuckerman

Here's a general definition of nice family of similar reps.
Definition (Jantzen, Schmid, Zuckerman). Suppose $H \subset G$ is a Cartan in a real reductive group, and $X^{*}=X^{*}(H) \subset \mathfrak{b}^{*}$
is the character lattice. A translation family is a map

$$
\Theta: \lambda_{0}+X^{*} \rightarrow \text { virtual reps of } G,
$$

with the following properties:

1. (each irr constituent of) $\Theta(\lambda)$ has infl char λ;
2. if F is a finite-diml algebraic rep of G, then

$$
\Theta(\lambda) \otimes F=\sum_{\mu \in \Delta(F)} \Theta(\lambda+\mu) .
$$

So Θ is a family indexed by infl chars in $\lambda_{0}+X^{*} \subset \mathfrak{h}^{*}$.
Change λ in $\Theta \leftrightarrow \leftrightarrow$ tensor with fin diml reps of G.
Theorem (Jantzen, Schmid, Zuckerman) Suppose π_{0} is a finite length virtual rep of infl char λ_{0}.

1. \exists translation fam Θ on $\lambda_{0}+X^{*}$ with $\Theta\left(\lambda_{0}\right)=\pi_{0}$.
2. If λ_{0} is regular (meaning $W^{\lambda_{0}}=1$) then Θ is unique.

Families of translation families (part one)

$H \subset G, \lambda_{0} \in \mathfrak{h}^{*}$ infl char, $X^{*} \subset \mathfrak{b}^{*}$ char lattice.
Write $\widehat{\mathcal{G}}\left(\lambda_{0}\right)=$ (finite) set of irr reps of G of infl char λ_{0}.
Recall that a trans fam based on $\lambda_{0}+X^{*}$ is a function from $\lambda_{0}+X^{*}$ to virtual reps of G.
Since virtual reps can be added and subtracted,

$$
\mathcal{F}\left(\lambda_{0}+X^{*}\right)=\text { all trans fams based on } \lambda_{0}+X^{*}
$$

is an abelian group: add and subtract values of Θ.
Jantzen-Schmid-Zuckerman uniqueness thm \Longrightarrow
Corollary Suppose $\lambda_{1} \in \lambda_{0}+X^{*}$ is regular. Then evaluation at $\lambda_{1}: \mathcal{F}\left(\lambda_{0}+X^{*}\right) \rightarrow \mathbb{Z} \widehat{G}\left(\lambda_{1}\right)$
is an isom. So $\mathcal{F}\left(\lambda_{0}+X^{*}\right)$ is free $/ \mathbb{Z}$, rank $=\# \widetilde{G}\left(\lambda_{1}\right)$.
The finite-rank \mathbb{Z} module $\mathcal{F}\left(\lambda_{0}+X^{*}\right)$ is the family of translation families in the slide title.

Families of translation families (part two)

$$
\mathcal{F}\left(\lambda_{0}+X^{*}\right)=\text { all trans fams based on } \lambda_{0}+X^{*},
$$

free abelian group, natural basis indexed by $\bar{G}\left(\lambda_{1}\right)$.
What other structure does this abelian group carry?
Weyl group $W=W(G(\mathbb{C}), H(\mathbb{C}))$ acts on \mathfrak{h}^{*} preserving X^{*}.
But W may not preserve $\lambda_{0}+X^{*}$. Integral Weyl grp for λ_{0} is
$W\left(\lambda_{0}\right)=_{\text {def }}\left\{w \in W \mid w \cdot \lambda_{0} \in \lambda_{0}+\right.$ (lattice of roots of H in $\left.\left.G\right)\right\}$;
the group $W(\lambda)$ is same for all $\lambda \in \lambda_{0}+X^{*}$.
$W\left(\lambda_{0}\right)$ preserves the coset $\lambda_{0}+X^{*}$.
Therefore $W\left(\lambda_{0}\right)$ acts on $\mathcal{F}\left(\lambda_{0}+X^{*}\right)$ by

$$
(w \cdot \Theta)(\lambda)=\Theta\left(w^{-1} \cdot \lambda\right) \quad\left(\lambda \in \lambda_{0}+X^{*}\right)
$$

This integral representation of the integral Weyl group is the key to character theory for $\widehat{\mathcal{G}}\left(\lambda_{0}\right)$.

The τ invariant

We fix an infl char $\lambda_{0} \in \mathfrak{h}^{*}$, with integral Weyl group

$$
W\left(\lambda_{0}\right)=\left\{w \in W \mid w \lambda_{0}-\lambda_{0} \in(\text { root lattice })\right\} .
$$

The integral root system is

$$
R\left(\lambda_{0}\right)=\left\{\alpha \in R(G, H) \mid\left\langle\alpha^{\vee}, \lambda_{0}\right\rangle \in \mathbb{Z}\right\} .
$$

Fix also a positive system $R^{+}\left(\lambda_{0}\right) \subset R\left(\lambda_{0}\right)$ making λ_{0} weakly dominant, and $\lambda_{1} \in \lambda_{0}+X^{*}$ strictly dominant.
$\Pi\left(\lambda_{0}\right)=$ simple of $R^{+}\left(\lambda_{0}\right), \quad S\left(\lambda_{0}\right)=\left\{s_{\alpha} \mid \alpha \in \Pi\left(\lambda_{0}\right)\right\} \subset W\left(\lambda_{0}\right)$. Wkly dom elts of $\lambda_{0}+X^{*}$ are a fund domain for $W\left(\lambda_{0}\right)$.
Trans fam Θ is irreducible (with respect to $R^{+}\left(\lambda_{0}\right)$) if $\Theta(\lambda)$ is irr for all dom reg $\lambda \in \lambda_{0}+X^{*}$.
Irr fams are a basis for $\mathcal{F}\left(\lambda_{0}+X^{*}\right)$, identified with $\widehat{G}\left(\lambda_{1}\right)$.
Definition (Borho-Jantzen-Duflo). The τ-invariant of an irr Θ is

$$
\tau(\Theta)=\left\{s \in S\left(\lambda_{0}\right) \mid s \cdot \Theta=-\Theta\right\}
$$

Theorem Suppose $E \subset S\left(\lambda_{0}\right) \rightsquigarrow W(E) \subset W\left(\lambda_{0}\right)$ Levi.

$$
\begin{aligned}
& {\left[\operatorname{sgn}(W(E)): \mathcal{F}\left(\lambda_{0}+X^{*}\right)\right]=\#\{\operatorname{irr} \Theta \mid E \subset \tau(\Theta)\}} \\
& {\left[\operatorname{triv}(W(E)): \mathcal{F}\left(\lambda_{0}+X^{*}\right)\right]=\#\{\operatorname{irr} \Theta \mid E \cap \tau(\Theta)=\emptyset\}}
\end{aligned}
$$

Cones and cells of irreducibles

Continue with pos int roots $R^{+}\left(\lambda_{0}\right)$ making λ_{0} wkly dom.
For $\pi \in \widehat{\mathcal{G}}\left(\lambda_{0}\right)$, write $\Theta_{\pi}=$ unique irr fam with $\Theta_{\pi}\left(\lambda_{0}\right)=\pi$.
The cone over π is

$$
\begin{aligned}
\bar{C}(\pi)= & \left\{\text { all irr constituents of all } \Theta_{\pi}(\lambda) \mid \lambda \in \lambda_{0}+X^{*}\right\} \\
= & \left\{\pi^{\prime} \in \widehat{G} \mid \pi^{\prime} \text { is an irr const of } \pi \otimes F,\right. \\
& \text { some irr alg rep } F \text { of } G(\mathbb{C})\} .
\end{aligned}
$$

Write $\pi^{\prime} \leq_{\Theta} \pi$ if $\pi^{\prime} \in \bar{C}(\pi)$, a partial preorder on \widehat{G}.
$\pi^{\prime} \leq_{\Theta} \pi \Longrightarrow \mathcal{A V}\left(\pi^{\prime}\right) \subset \mathcal{A V}(\pi)$.
The cell of π is

$$
\begin{aligned}
C(\pi)= & \left\{\text { all irr } \pi^{\prime} \text { with } \pi^{\prime} \leq_{\Theta} \pi \leq_{\Theta} \pi^{\prime}\right\} \\
= & \left\{\pi^{\prime} \in \widehat{G} \mid \pi^{\prime} \text { is an irr const of } \pi \otimes F\right. \\
& \text { and } \pi \text { an irr const of } \pi^{\prime} \otimes E \\
& \text { some irr alg reps } E, F \text { of } G(\mathbb{C})\} .
\end{aligned}
$$

Write $\pi^{\prime} \sim_{\Theta} \pi$ if $\pi^{\prime} \in \bar{C}(\pi)$, an equivalence relation on \widehat{G}.

More about the $W\left(\lambda_{0}\right)$ representation

Continue with pos int roots $R^{+}\left(\lambda_{0}\right)$ making λ_{0} wkly dom.
Definition (Kazhdan-Lusztig) Make irr transl families a directed $W\left(\lambda_{0}\right)$-graph with edge of weight m from Θ_{π} to $\Theta_{\pi^{\prime}}$ whenever

1. $\tau(\pi) \not \subset \tau\left(\pi^{\prime}\right)$, and
2. $\operatorname{dim} \operatorname{Ext}^{1}\left(\pi, \pi^{\prime}\right)=m$.

An edge from Θ_{π} to $\Theta_{\pi^{\prime}}$ implies $\pi^{\prime} \leq_{\Theta} \pi$.
Conversely $\pi^{\prime} \leq_{\Theta} \pi \Longrightarrow \exists$ directed path Θ_{π} to $\Theta_{\pi^{\prime}}$.
Theorem (Lusztig-Vogan) Say Θ_{π} irr transl fam on $\lambda_{0}+X^{*}$, and $s \in S\left(\lambda_{0}\right)$ is a simple reflection. Then

$$
s \cdot \Theta_{\pi}=\left\{\begin{aligned}
-\Theta_{\pi} & \\
\Theta_{\pi}+\sum_{\substack{\pi^{\prime}, \underline{m} \\
s \in \tau\left(\pi^{\prime}\right)}} m \cdot \Theta_{\pi^{\prime}} & (s \in \tau(\pi)) \\
& (s \notin \tau(\pi))
\end{aligned}\right.
$$

Corollary The $W\left(\lambda_{0}\right)$ graph determines the $W\left(\lambda_{0}\right)$ representation on translation families. Each cone $\bar{C}(\pi)$ spans a $W\left(\lambda_{0}\right)$ subrepresentation, so the cell $C(\pi)$ carries a natural quotient representation $\Sigma(\pi)$ of $W\left(\lambda_{0}\right)$.

What does the cell representation tell you?

Continue with pos int roots $R^{+}\left(\lambda_{0}\right)$ making λ_{0} wkly dom.
Smallest (weakly dom) infl char in $\lambda_{1} \in \lambda_{0}+X^{*}$ is typically very singular: that is, fixed by large set S_{1} of simple reflections.
Proposition Cell $C(\pi)$ contains some irr $\Theta_{\pi_{1}}$ nonzero at $\lambda_{1} \Longleftrightarrow$ $\left[\operatorname{triv}\left(W\left(S_{1}\right)\right): \Sigma(\pi)\right]>i 0$.

So $\Sigma(\pi)$ determines smallest infl char in $C(\pi)$.
Theorem (Joseph, Lusztig).

1. Irr $W\left(\lambda_{0}\right)$ reps in $\Sigma(\pi)$ are in a Lusztig family in $\widehat{W\left(\lambda_{0}\right)}$.
2. Family has a unique special rep $\sigma_{0}(\pi) \in \widehat{W\left(\lambda_{0}\right)}$.
3. $\sigma_{0}(\pi)$ is Springer for a special nilpotent orbit $O_{0}(\pi) \subset \mathfrak{g}(\lambda)^{*}$.
4. Lusztig's truncated induction of $\sigma_{0}(\pi) \rightsquigarrow$ Springer rep $\sigma(\pi) \in \widehat{W}$, and so a nilpotent orbit $O \subset \mathfrak{g}^{*}$.

So $\Sigma(\pi)$ determines GK dimension of π.

